日期:2020-01-16 15:21:44
欧几里得92、数学家西奥多罗斯能做到的,我们也能做到
“如果p=2k+1,q=2m+1,把它们代进p2=xq2(p的平方=x·q的平方),有8[k(k+1)/2–xm(m+1)/2]=x-1…(化简过程见《欧几里得91》)…”网友接着说。
“于是x-1必须是8的倍数…”网友继续说。
…证明:
由《欧几里得91》知,k(k+1)/2,m(m+1)/2均是整数。
∴ 8[k(k+1)/2–xm(m+1)/2]=x-1可表示成8(整数-x·整数)=x-1
∵ x是正整数(见上集)
∴ 8(整数-x·整数)=x-1可表示成8(整数-整数·整数)=整数-1
8(整数-整数·整数)=整数-1
两边同时除以8:
整数-整数·整数=(整数-1)/8
∵ “整数-整数·整数”是整数
∴(整数-1)/8是整数
∴ (整数-1)必须是8的倍数
∴ x-1必须是8的倍数。
…
“如果当时Theodorus(西奥多罗斯)是这么证明的,那么他可以得到这样一个结论:如果x-1不能被8整除,那么√x就不可能被表示成p/q,即√x不是有理数…”网友最后说。
…
证明√x(x是自然数)不是有理数。
设√x是有理数
则√x=p/q(p、q是正整数)
…有理数的性质:有理数可以表示成两个整数之比。
如果x是奇数且p/q不能再约分,那么p和q都是奇数(证明见《欧几里得91》)。
奇数可以表示成2n+1(n为整数)。
…奇数的定义。
∴ p可以表示成2k+1,q可以表示成2m+1。(k、m为正整数。)
∵ p=2k+1,q=2m+1时,p2=xq2(p的平方=x·q的平方)成立的条件是:x-1是8的倍数。
∴ x-1不是8的倍数时,p2=xq2(p的平方=x·q的平方)不成立。
p2=xq2(p的平方=x·q的平方)不成立,即:√x=p/q不成立…√x无法表示成p/q…√x是无理数。
∴ x-1不是8的倍数时,√x是无理数
…
“x-1不是8的倍数时,√x是无理数…好了,现在3、5、7、11、13减去1后都不是8的倍数,它们的平方根一定不是有理数…”网友说。
“在x=9时发生了一次例外,但9是一个平方数…”网友接着说。
…x=9时发生了一次例外:x=9时,x-1=9-1=8,是8的倍数。
根据“x-1不是8的倍数时,√x是无理数”,无法判断√9的平方根是无理数,还是不是无理数。
“我们知道,√9的平方根是3,不是无理数…所以‘√9的平方根是无理数,还是不是无理数’不需要再判断…”现代学者说。
“因此,西奥多罗斯得以越过9,继续证下去…”现代学者接着说。
…
“而当x=17时这种证明方法没办法解释了,于是Theodorus就此打住…”网友最后说。
…x=17时,x-1=17-1=16,是8的倍数。
根据‘x-1不是8的倍数时,√x是无理数’,无法判断√17的平方根是无理数,还是不是无理数。
“从17开始,‘x-1不是8的倍数时,√x是无理数’这种证明方法开始失效…西奥多罗斯无法继续证下去…所以他就此打住…”现代学者说。
““有人觉得奇怪了:既然当时没有代数,古希腊人是怎么提出‘所有数都可以表示为整数之比’的呢?…”网友继续说,“其实古希腊人根本没有提出什么整数之比,这是后人的一个误解…当时毕达哥拉斯学派提出的,叫做‘公度单位’…”
请看下集《欧几里得93、现代司空见惯的“奇数x偶数y”,放在古代却是高科技》”
2
日期:2020-01-18 14:42:56
欧几里得93、现代司空见惯的“奇数x偶数y”,放在古代却是高科技
“0的平方根是0,1是平方根是1,2的平方根(√2)已被希帕索斯证明是无理数(见《欧几里得79》),4、9、16…是平方数,它们的平方根是已知的数…”另一位现代学者说,“所以…西奥多罗斯打算寻找剩下的数的平方根…”
“剩下的数是:3、6、7、8…”现代学者接着说。
“如果剩下的数的平方根不能用整数之比表示出来…那它们就和√2一样,是无理数…”现代学者继续说。
“西奥多罗斯曾尝试证明它们是无理数,并成功证明‘3到17的非平方数的根是无理数’(见《欧几里得90~92》)…”现代学者最后说。
…
“实际上,我们上面说的这么多(见前文),在古希腊的数学体系中是根本不可能出现的…”网友说,“毕达哥拉斯时代根本没有发展出代数这门学科来…它们掌握的只是纯粹的几何…因此,Hippasus(通常译为西奥多罗斯)当时的证明不可能像我们现在这样搞点什么奇数x偶数y之类的高科技东西…”
…代:代替…
…代数:数学的分支学科。通过用字母代表数进行运算。能简明地表示数量关系…
“事实上,Hippasus当时完全运用的平面几何知识来证明他的结论…”网友接着说。
…平面:在空间中,到两点距离相同的点的轨迹…
…平面2:由显示生活中(例如镜面、平静的水面等)的实物抽象出来的数学概念,但又与这些实物有根本的区别。既具有无限延展性(也就是说平面没有边界),又没有大小、宽窄、薄厚之分…
(…抽象:见《欧几里得17》…)
…几何:1.多少:价值~。2.数学的分支学科。研究物体的形状、大小和位置及它们的相互关系…
…平面几何:几何学的一个分支,研究平面图形的性质,如形状、大小、位置等…
…平面几何2:指按照欧几里得的《几何原本》构造的几何学。也称欧几里得几何。平面几何研究的是平面上的直线和二次曲线(即圆锥曲线, 就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度,位置关系)。平面几何采用了公理化方法,在数学思想史上具有重要的意义…
“有人觉得奇怪了:既然当时没有代数,古希腊人是怎么提出‘所有数都可以表示为整数之比’的呢?…”网友继续说,“其实古希腊人根本没有提出什么整数之比,这是后人的一个误解…当时毕达哥拉斯学派提出的,叫做‘公度单位’…”
…公:共同的…
…度:计量长短:~量衡…
…公度:几何学概念。对于两条线段a和b,如果存在线段d,使得a=md,b=nd(m,n为自然数),那么称线段d为线段a和b的一个公度。并称线段a和b为可公度线段或可通约线段。如果对于线段a和b,这样的线段d不存在,那么称线段a和b为无公度线段或不可通约线段…
““欧几里德算法是用来求两个正整数最大公约数的算法。是由古希腊数学家欧几里德在其著作《The Elements》中最早描述的,所以被命名为‘欧几里德算法’…”现代学者说。
请看下集《欧几里得94、欧几里德算法(辗转相除算法)》”
2
【网站提示】 读者如发现作品内容与法律抵触之处,请向本站举报。 非常感谢您对易读的支持!
举报
© CopyRight 2011 yiread.com 易读所有作品由自动化设备收集于互联网.作品各种权益与责任归原作者所有.